Geyer, R., Jambeck, JR & Law, KL Production, use, and the fate of all plastics ever made. Sci. Adv. 3e1700782 (2017).
Santos, RG, Machovsky-Capuska, GE & Andrades, R. Plastic ingestion as an evolutionary trap: toward a holistic understanding. Science 37356–60 (2021).
MacLeod, M., Arp, HPH, Tekman, MB & Jahnke, A. The global threat from plastic pollution. Science 37361–65 (2021).
Chen, CC, Dai, L., Ma, L. & Guo, RT Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4114–126 (2020).
George, N. & Kurian, T. Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste. Ind. Eng. Chem. Res. 5314185–14198 (2014).
Simon, N. et al. A binding global agreement to address the life cycle of plastics. Science 37343–47 (2021).
Kawai, F., Kawabata, T. & Oda, M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Apple. Microbiol. Biotechnol. 1034253–4268 (2019).
Sarah, K. & Gloria, R. Achieving a circular bioeconomy for plastics. Science 37349–50 (2021).
Ru, J., Huo, Y. & Yang, Y. Microbial degradation and valorization of plastic wastes. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00442 (2020).
Ellis, LD et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4539–556 (2021).
Taniguchi, I. et al. Biodegradation of PET: current status and application aspects. ACS Catal. https://doi.org/10.1021/acscatal.8b05171 (2019).
Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580216–219 (2020).
Inderthal, H., Tai, SL & Harrison, STL Non-hydrolyzable plastics – an interdisciplinary look at plastic bio-oxidation. Trends Biotechnol. 3912–23 (2021).
Yoshida, S. et al. A bacterium that degrades and asimilates poly(ethylene terephthalate). Science 3511196–1199 (2016).
Chen, C. C. et al. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis. Nat. Catal. https://doi.org/10.1038/s41929-021-00616-y (2021).
Worm, B., Lotze, HK, Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a persistent marine pollutant. Ann. Rev. Env. Resourc.https://doi.org/10.1146/annurev-environ-102016-060700 (2017).
Son, HF et al. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal. 93519–3526 (2019).
Austin, HP et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl Acad. Sci. USA 115E4350–E4357 (2018).
Joo, S. et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 9382 (2018).
Han, X. et al. Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun. 82106 (2017).
Furukawa, M., Kawakami, N., Oda, K. & Miyamoto, K. Acceleration of enzymatic degradation of poly(ethylene terephthalate) by surface coating with anionic surfactants. Chem. Suss. Chem. 114018–4025 (2018).
Cui, Y. et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal. https://doi.org/10.1021/acscatal.0c05126 (2021).
Chen, K., Hu, Y., Dong, X. & Sun, Y. Molecular insights into the enhanced performance of ekylated petase toward PET degradation. ACS Catal. 117358–7370 (2021).
Shroff, R. et al. Discovery of novel gain-of-function mutations guided by structure-based deep learning. ACS Synth. Biol. 92927–2935 (2020).
Kawai, F. et al. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Apple. Microbiol. Biotechnol. 9810053–10064 (2014).
Weissmann, D. Applied Plastics Engineering Handbook: Processing, Materials, and Applications 2nd edn (ed. Kutz, M.) 717–741 (William Andrew Publishing, 2017).
Wallace, NE et al. The highly crystalline PET found in plastic water bottles does not support the growth of the PETase-producing bacterium Ideonella sakaiensis. Environ. Microbiol. Rep. 12578–582 (2020).
Wei, R. & Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb. Biotechnol. 101308–1322 (2017).
Kawai, F., Kawabata, T. & Oda, M. Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling. ACS Sustain. Chem. Eng. 88894–8908 (2020).
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276307–326 (1997).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogger. 602126–2132 (2004).
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D, Struct. Biol. 75861–877 (2019).
Fujita, M. et al. Cloning and nucleotide sequence of the gene (amyP) for maltotetraose-forming amylase from Pseudomonas stutzeri MO-19. J. Bacteriol. 1711333–1339 (1989).
Leonard, SP et al. Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synth. Biol. 71279–1290 (2018).